TeiR, a LuxR-type transcription factor required for testosterone degradation in Comamonas testosteroni.

نویسندگان

  • José Luis Pruneda-Paz
  • Mauricio Linares
  • Julio E Cabrera
  • Susana Genti-Raimondi
چکیده

We have identified a new steroid-inducible gene (designated teiR [testosterone-inducible regulator]) in Comamonas testosteroni that is required for testosterone degradation. Nucleotide sequence analysis of teiR predicts a 391-amino-acid protein which shows homology between residues 327 and 380 (C-terminal domain) to the LuxR helix-turn-helix DNA binding domain and between residues 192 and 227 to the PAS sensor domain. This domain distribution resembles that described for TraR, a specific transcriptional regulator involved in quorum sensing in Agrobacterium tumefaciens. Analysis of the gene expression indicated that teiR is tightly controlled at the transcriptional level by the presence of testosterone in the culture medium. A teiR-disrupted mutant strain was completely unable to use testosterone as the sole carbon and energy source. In addition, the expression of several steroid-inducible genes was abolished in this mutant. Northern blot assays revealed that teiR is required for full expression of sip48-beta-HSD gene mRNA (encoding a steroid-inducible protein of 48 kDa and 3beta-17beta-hydroxysteroid dehydrogenase) and also of other steroid degradation genes, including those encoding 3alpha-hydroxysteroid dehydrogenase, Delta(5)-3-ketoisomerase, 3-oxo-steroid Delta(1)-dehydrogenase, and 3-oxo-steroid Delta(4)-(5alpha)-dehydrogenase enzymes. Moreover, when teiR was provided to the teiR-disrupted strain in trans, the transcription level of these genes was restored. These results indicate that TeiR positively regulates the transcription of genes involved in the initial enzymatic steps of steroid degradation in C. testosteroni.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Testosterone-inducible regulator is a kinase that drives steroid sensing and metabolism in Comamonas testosteroni.

The mechanism of gene regulation by steroids in bacteria is still a mystery. We use steroid-inducible 3alpha-hydroxysteroid dehydrogenase/carbonyl reductase (3alpha-HSD/CR) as a reporter system to study steroid signaling in Comamonas testosteroni. In previous investigations we cloned and characterized the 3alpha-HSD/CR-encoding gene, hsdA. In addition, we identified two negative regulator genes...

متن کامل

Testosterone degradation genes in Comamonas testosteroni TA441 II: ORF12 and tesD, E, F, G

A meta-cleavage enzyme gene, tesB, was cloned from Comamonas testosteroni TA441. The tesB-disrupted mutant did not grow on testosterone, suggesting that tesB is necessary for TA441 growth on testosterone. The usual substrate of TesB is probably 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione. By analyzing the transposon mutants of TA441 that show limited growth on testosterone, tesD...

متن کامل

A new bacterial steroid degradation gene cluster in Comamonas testosteroni TA441 which consists of aromatic-compound degradation genes for seco-steroids and 3-ketosteroid dehydrogenase genes.

In Comamonas testosteroni TA441, testosterone is degraded via aromatization of the A ring, which is cleaved by the meta-cleavage enzyme TesB, and further degraded by TesD, the hydrolase for the product of TesB. TesEFG, encoded downstream of TesD, are probably hydratase, aldolase, and dehydrogenase for degradation of 2-oxohex-4-enoicacid, one of the products of TesD. Here we present a new and un...

متن کامل

Meta-cleavage enzyme gene tesB is necessary for testosterone degradation in Comamonas testosteroni TA441.

Comamonas testosteroni metabolizes testosterone as the sole carbon source via a meta-cleavage reaction. A meta-cleavage enzyme gene, tesB, was cloned from C. testosteroni TA441. The deduced N-terminal amino acid sequence of tesB matched that of the purified meta-cleavage enzyme which is induced in TA441 during growth on testosterone as the sole carbon source. The tesB-disrupted mutant did not s...

متن کامل

Identification of Comamonas testosteroni as an androgen degrader in sewage

Numerous studies have reported the masculinization of freshwater wildlife exposed to androgens in polluted rivers. Microbial degradation is a crucial mechanism for eliminating steroid hormones from contaminated ecosystems. The aerobic degradation of testosterone was observed in various bacterial isolates. However, the ecophysiological relevance of androgen-degrading microorganisms in the enviro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of bacteriology

دوره 186 5  شماره 

صفحات  -

تاریخ انتشار 2004